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The disorder in the layer stacking of graphitic carbons is interpreted in terms of a statistical distribu- 
tion for the positional correlation between adjacent layers and stacking faults for the second layer 
influence. 

Experimental data show the variation of the root-mean-square values of the statistical distribution 
and the stacking fault parameters in the transition from non-graphitic carbons to graphite. 

Introduction 

The designation 'graphitic carbon' has been intro- 
duced by Franklin (195t) for those carbons in which 
three-dimensional correlations exist between the graph- 
ite layers. These correlations appear in the diffraction 
pattern as modulations of the intensity concentrated 
on all (hk) rods, whereas the 'non-graphitic carbon' 
shows modulations of the (00) rod only. The latter 
effect has been described by Biscoe & Warren (1942), 
who explain the absence of three-dimensional corre- 
lations by a random translation and rotation of the 
graphite layers ('turbostratic structure'). 

As a measure of the three-dimensional correlations, 
Franklin (1951) proposed the parameter p defined as 
the fraction of layers showing no three-dimensional 
correlations. Houska & Warren (1954) introduced the 
parameter PI defined as the probability for the occur- 
rence of perfect correlation between two adjacent 
layers, a definition which has also been adopted by 
Maire & M6ring (1957) and M6ring & Maire (1960). 

Franklin (1951) and Bacon (1951) have shown that 
there is a non-linear relationship between the average 
interlayer spacing and p. This non-linearity indicates 
that a model of ordered and disordered stacks of 
layers with unique interlayer spacings corresponding 
to each type of order is too simple. Franklin (1951) 
considered therefore different interlayer spacings at 
the limits between ordered and disordered regions. 

Houska & Warren (1954), Maire & M6ring (1957) 
and M6ring & Maire (1960) have shown that there 
is a fluctuation' of the interlayer spacing which can be 
assessed by studying the line profiles of the 00l bands. 
This fluctuation was attributed to a distribution of 
spacings in the disordered stacks of layers. The ordered 
stacks are considered to possess a unique interlayer 
spacing, that of perfect graphite, whereas the disordered 
stacks are supposed to have a constant average spacing. 

The aim of this paper is to establish a more general 
model for the disorder in graphitic carbons and to 
show how the parameters based on this model can 
describe the transition from non-graphitic carbons to 
graphite. 

Theoretical 

Let the coherent scattering I be given by the basic 
equation of the kinematic scattering theory 

l(s) = ~[0"2(r)], (I) 
where 

and 

= Iv exp (2~irs) dr, 

? 
0*2 =_Iv 0(Y) 0(r + Y) dry. 

s is the reciprocal space vector ( s=2 sin 0/2), 
r the position vector in physical space, 
o(r) the distribution of electron density, and 
y an auxiliary variable in physical space. 

In the case of a layer structure with identical layers, 
0 can be written as 

= 0z ~ z = Iv 0z(Y) z ( r -  y) 0 dry 

where 0z is the electron-density distribution within 
one layer and z the layer distribution. For the perfect 
hexagonal lattice of graphite one finds: 

01 = 00 "k X X 6 ( r - p l a l  -p2a2) (2) 
Pt  P2 

where 0z is given by the content of the unit cell of the 
layer structure and ax and a2 the unit-cell vectors. 

is the Dirac delta distribution, and Pl and P2 are 
ensembles of integers. 

The layer distribution is given by: 

z = X d [ r -  ma3 - ( - 1)re(a1 - a2)/6] 
m 

where a3 is the interlayer spacing and m the running 
index of the layer. 

For perfect graphite, or for imperfect graphite with 
disorder in ~oz and z independent of each other, one 
can write: 

0 *2 = 0~ 2 * z .2 (3) 

We shall adopt this relationship and assume that 
the disorder in 0z, although probably correlated to 
the disorder in z, is very small compared with that in z. 
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For perfect hexagonal graphite one finds 

1 
- -  z .2 = L" 5 ( r -  2ma3) 
N ,, 

+½ X 5 { r - ( 2 m +  1)a3 + (al-az)/3} 
Ill 

when N, the total number of layers, tends to infinity. 
If we now consider a disordered graphite structure 

we can first think of faults in the stacking of the layers 
which are due to the occurrence of ABC sequences. 
This means that (1/N)z *z can still be expressed by a 
regular array of delta distributions as shown in Fig. 
1, but each delta distribution has a weight Am, n which 
is governed by the number of stacking faults and 
their distribution in space. It is, however, obvious that 
the disorder in graphitic carbons cannot be described 
by stacking faults alone. In order to explain the dif- 
fuseness of (hkl) lines for (h-k)~3 integral, one has 
to consider probability distributions around the ideal 
positions of the layers. We thus replace the delta 
distributions in (1/N)z*Z by distributions hm, n of finite 
dimensions as shown in Fig. 1. 

(1/N)z *z can thus be written generally as 

1 
- -z*2=Z"  X Am, nhm, n{r-ma3-n(a-a12)/3}  (4) 
g m , 

with the conditions S Am, n = 1 and Am, n = 0  if (m+n) 
n 

is odd or ifn > m. The distributions hm, n are normalized 

I hm, n d v = l .  
v 

Considering equations (1) and (3) one can write 

I (s)= [F/2I. IZZl (5) 

when Fz = ~ (Qz) and Z = ~(z). From equation (4) fol- 
lows 

1 
N IZzl =Z Z Am,. Hm, n exp [2rd{ma3 

n l  /7 

+ n(al - az)/3 }s] 
when Hm, n = qd(hm, n). 

(6) 

z(r) ~}2(r) 

(al-a2)/3 , 
H 
I I t,5 ¢6 c# 

I 1 ~ ~ 
• .~ "~ . . . . . . . .  

A2,-2 A2,0 A2,2 
• e l  • • . . . o . , . ,  

1 1 A1,-1 A l l  

• 1 • 1 A o 0  . 

k J 
_ Y - -  

Perfect Statistical 
hexagonal graphite Stacking faults distributions 

Fig. 1. Layer  dis t r ibut ion z(r) and  layer correlat ion funct ion 
(l/N)z*Z(r) for perfect and imperfect graphite. 

Owing to the two-dimensional periodicity in C~t, 
Ft is different from zero only for s=(hlbl,  h2bz, s3), 
where b~ and bz are the reciprocal unit-cell vectors of 
the layer structure, hi and h2 integral numbers and 
s3 the component of s in the a3 direction. IZZl is thus 
only of interest in these regions, which are the (hk)-rods 
discussed by Biscoe & Warren (1942). Apart from the 
effect of the atomic scattering factor, Ft is constant 
along s3 in each rod; the modulation of the intensity 
is thus given only by IZ21. As already known from the 
calculations of stacking faults in cubic and hexagonal 
metals, there are two kinds of modulation of these 
rods. For (hl-h2)/3 integral, one finds: 

1 
N IZZl=Z Z Hm, nAm, n exp (2rcima3s3) (7) 

i n  n 

and (hx-hz)/3 non-integral 

1 iZZl=Z [ z Am, nHm,. 
N m n=0 

(rnod. 3) 

--½ ~ Am, nHm, n] • e x p  (2~zima3s3). (8)  
n= 1,2 
(mod. 3) 

At this stage we introduce two assumptions: 
1. The distributions hm, n depend only on m, the 

number of interlayer spacings which separate any pair 
of layers. 

2. These distributions hm depend only on inter- 
actions between adjacent layers; this means hm=h*lml 
where -k Iml stands for Iml times convoluted and h 
stands for the next neighbour distribution. 

Equation (7) becomes then: 

1 1 + H exp (2rcia3s3) 
N Izzl = Re 1 - H exp (2rda3s3) (9) 

where Re stands for 'real part'. 
This intensity distribution is that of a 'paracrystal- 

line lattice factor' as described by Hosemann & 
Bagchi (1962)which, for a 'well-behaved' distribution 
h, shows maxima at s3 approximately equal to integral 
multiples of l/a3; the integral width B of the maxima 
is approximately: 

1 
B___ 2a-3- (1 - I g l ) .  (10) 

To simplify equation (8) we make use of the approach 
given by Wilson (1942) in his calculations on stacking 
faults in hexagonal cobalt. Considering the summations 
over n one finds that Pro, defined as the probability 
of finding a layer in an equivalent position to any 
layer m spacings apart, is given by: 

Pm= S Am, n. 
n = O  

(mod. 3) 

Following Wilson (1942), we can write 

P m = ½ + Z  " CixT' 
i 
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where 

Xx = ½-(- e + 1/4-  8e +e2) 

x2= -½(c~ + 1/~;- 8~ + ~2) 

cx = k( l  - (1 - ~ ) / I / T -  8~ + ~') 
C2 =½(1 + (1 - ~) / ] /4-  8c~+ c~2). 

In the case of graphite, cc is the fractional number of 
rhombohedral stacking faults. 

Equation (8) becomes thus 

1 1 + x~H exp (2rHa3s3) 
N IZ2]--a Z" Ci Re . (11) 

i 1 - x~H exp (2rcia3s3) 

For ~ smaller than 0.5, this intensity distribution 
shows two kinds of maxima related to the even and the 
odd values of the index l for hexagonal graphite. 
Provided that these maxima do not overlap too 
strongly, the integral widths are approximately 

I 
Beven "~ -~-3 ( 1 -  xllH[) (12) 

1 
noaa~ 2~3 (1 +x2lHI). (13) 

We have so far considered lattices of infinite extension. 
To introduce finite dimensions we assume that no 
correlation exists between the disorder and the 
crystaUite size. In this case, the intensity distribution 
IL for an ensemble of crystallites of finite size (L) 
is obtained by the convolution of the intensity distrib- 
ution for infinite size I® with a distribution Cr. which 
represents the effect of the shape functions (Ewald, 
1940) of the ensemble of crystallites in reciprocal space. 

IL= I~ ~r rPL . 

The peaks in I~o are thus broadened further by the 
effect of finite dimensions, but this broadening is the 
same for all peaks. 

Experimental 

Six powder samples of organic compounds graphitized 
at different temperature have been measured with a 
Philips diffractometer, filtered Cu radiation and a 
xenon-filled proportional counter or Mo radiation and 
a scintillation counter, and pulse-height discrimination. 
The starting materials and the heat-treatment tempera- 
tures were the fo l lowing:  

Acenaphthylene; 2000, 2500, 3000 °C 
Bifluorenyl; 2000, 3000 °C 
Tetrabenzonaphthalene; 3000 °C. 

The line profiles of the 00l, 10l, 11l, and 30l lines 
were measured as far as they could be reasonably 
separated from adjacent lines and the diffuse back- 
ground, and appropriate corrections were applied for 
instrumental broadening. The evaluation was car- 
ried out in two ways. First, the intensity distribution 

along the (hk)-rods was reconstructed with the use 
of a plot of SS 3/(S3) versus f 2  as described by Franklin 
(1951). Secondly, the integral line width along s was 
converted into that along s3 using the tangent plane 
approximation (von Laue, 1926) and the relations 
between integral widths of projections as described 
in the Appendix. The latter method proved to be a 
practical way of eliminating the finite width of the 
rod as indicated by the hkO line profile provided the 
hkl lines are not too diffuse. The results were inter- 
preted using equations (9) and (11) for a comparison 
of observed and calculated intensity distributions, and 
equations (10), (12) and (13) for the evaluation of 
integral widths of relatively sharp lines. The effect of 
crystallite size leads to appreciable corrections only 
for the 00l lines of lower order. Only the most ordered 
graphitized sample (acenaphthalene 3000 °C) showed 
well separated 30/lines, notably 304, whereas for all 
the other samples the modulations of the 30l rod 
could not be reconstructed unambiguously owing to 
the considerable overlap with modulation from other 
rods, especially 11 l and 00l. This is unfortunate since 
it limits the information on H(s) to a few values along 
00/, 10l and 11l for most of the samples. 

The average interlayer spacing was obtained from 
corrected peak positions of 00l lines of higher order 
since it was found that the position of the 002 line is 
affected by too many errors due to the diffractometer 
geometry as well as the absorption correction. 

Results and discussion 

Although the information on H(s) is limited to a few 
values only, it appears that Franklin's approach H =  
1 - p  for (h + k) non-zero is not a good approximation 
since it implies identical intensity distributions along 
s3 for ( h - k ) / 3  integral on one hand and ( h - k ) / 3  non- 
integral on the other, which has not been found. The 
experimental results are better approached with an 
H of the form: 

H(s) = exp [ -  2rcZ(A~zs~2 + A]s~)] 

slz = Is1 + s21, 

which means that the next neighbour distribution h 
can be represented by a three-dimensional Gaussian 
distribution with mean square deviations A~2 parallel 
and A] perpendicular to the layer planes. The latter 
value is obtained from the 001 lines; with the know- 
ledge of A3, A12 can be obtained from the lines ( h - k ) / 3  
integral, and with the knowledge of both values, ~ is 
obtained from the lines ( h - k ) / 3  non-integral. 

The values obtained in this way are shown in Figs. 
2, 3, and 4. Furthermore, the values given by other 
authors for p or P~ and the disorder in the a3 direction 
as well as some line profiles of 10/bands  given by 
Franklin (1951) have been reinterpreted to yield the 
proposed parameters and are plotted together with 
the results of the present work. 
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The most striking feature is the perfection of the 
linear relationship between A~2 and a3 (Fig. 2) which 
is found to be 

d3 = 3.353 +0.425 A~2 (~ ) .  (15) 

This result is rather unexpected, since no obvious 
reason can be seen for the mean square deviation 
parallel to the layer planes to be proportional to the 
average interlayer spacing. The range of validity of the 
linear relationship as well as the small scatter of the 
values measured by different authors seems to indicate, 
however, that this relationship is a genuine feature. 
It is interesting to note that with this model of disorder 
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Fig. 2. Average interlayer spacing a3 as function of the mean 
square displacement A122 of adjacent layers parallel to the 
layer planes. Present work ©. Values calculated from data 
of: Franklin (1951) 0,  Bacon (1951) x, Houska & Warren 
(1954) m, Mering & Maire (1960) +. 

in graphitic carbons the average interlayer spacing of 
3.44 ~ is no longer a limiting value as in the case of 
the Franklin model, but merely an interlayer spacing 
for which A12 has a value which does not produce 
modulations of the (11) rod strong enough to be 
detected by the usual techniques. If one extrapolates 
to ~i3 = 3.44 A in Fig. 2, one obtains A12=0-45/~k which 
is still small compared with the unit-cell dimension 
in the (a l -a2)  direction. Thus a carbon with the 
'turbostratic' value of the inter-layer spacing, 3.44 A, 
may yet possess partial correlation. 

A plot of A 3 v e r s u s  d3 (Fig. 3) does not reveal a 
simple relationship between these two parameters. The 
values scatter relatively strongly, and the scatter does 
not seem to be due to experimental errors or differen- 
ces in the methods of evaluation only. A comparison 
of the ZI 3 values with the corresponding values of 
a3-a3mln (Fig. 3, broken line) shows that, over a 
large range, the r.m.s, deviations around ~3 are far 
larger than the difference between c73 and the possible 
minimum value of a3. This result seems to indicate 
that the disorder is not simply due to faults in the 
stacking of relatively free layers since in that case one 
would expect A3 to [be proportional to d3-a3min. To 
explain the results one might think of special kinds 
of disorder effect like those due to dislocations, cross- 
links and, perhaps, tetrahedral carbon atoms. It is 
possible that the scatter of the experimental data is 
partly due to basic differences in the kinds of disorder 
present in the various samples. 

For ~, the fraction of rhombohedral stacking sequ- 
ences, only a few values are available, which do not 
allow a detailed discussion of the relationship between 
this parameter and d3. It seems, however, that a pre- 
ference for hexagonal stacking sequences is developed 
only at d3-values lower than about 3.38 ,~,, and that 
even relatively well ordered graphitic carbons as, 
for example, the 3000 °C sample of acenaphthalene, 
contain still appreciable amounts of rhombohedral 
stacking sequences. 
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Summing up one can state that the relatively simple 
model for the structure of graphitic carbons proposed 
in this work enables one to make a consistent inter- 
pretation of the interference effects which can be as- 
sessed by powder techniques. It is possible that a 
refinement could be obtained by studying oriented 
samples. 

The author is indebted to Drs H. Tompa and R. 
Gevers for stimulating discussions during the course 
of this work, and to Mr J. P. Pauwels for technical 
assistance. 

APPENDIX 

The integral width of projections 
of a multi-dimensional distribution 

A problem frequently encountered in the evaluation 
of line widths is the calculation of the integral width 
of the projection of a three-dimensional distribution 
onto any given direction from the line widths of pro- 
jections onto other directions. A general solution of 
this problem can be found as follows: 

Let ~(s) be a spherically symmetrical distribution 
and ~0(r) its Fourier transform. The content of s-space 
is then given by: 

Iv fp(0) = w. ~dvs 

Let ~ be such that w is real and positive-definite. 
The projection of ~ on to a line, denoted {~}, is 

given by the one-dimensional Fourier transform of 
~0, from which follows: 

{eb}(o)=I~_ ~o(r)dr=u. (16) 

The integral width of {~} is defined as 

{e,}ds/{,p} / B = (o) = w u. 
- - o 0  

For B to be meaningful, u has to be positive-definite. 
We now replace the variable s in ~(s) by [Tsl where 

T is a non-degenerate tensor the determinant of which 
is considered to have a positive-definite value v. 

We now define the distribution q~T(S) by: 

q~T(s) = v4)(I Tsl). 

According to Fourier transform theory one finds: 

~( • T) = ~0[I (T-1)'rl] = ~0 T(r) (17) 

where ( T - l )  ' is the transposed inverse of tensor T. 
With this definition of ~T one finds: 

Iv ~dvs = Iv c19 TdVs. 

We now consider the projection of q~T onto a line 
the direction of which is defined by the unit vector 
e3" and denote this projection by {q~7'}~. As for equation 
(16) one finds 

where 
rj = r j  . ej . 

Using equation (17) one obtains: 

~0 T(rj) = ~0[I (T-l) 'ej I rj] 

After a change of variables in (18), one finds: 

{ q'T}j(0) = u/l(7-1) ' ejl 

The integral width B~ of a projection of q~T onto a 
line in the direction ej is thus 

B j = B .  [(T-1)'e~l. 

Let T, for example, be given by 

(  001 T= 0 ky  1 0 
0 0 k31 

and 
S = sle 1-4- $2e2 -{-- $3e3 

where e~, e2 and e3 define a rectangular system of 
coordinates. If the integral widths of the projections 
of q~T on to the principal axis are denoted B1, B2 and 
B3, one finds Bl=Bk~, B2=Bk2 and B3=Bk3. The 
integral width of the projections in an arbitrary direc- 
tion ej is then given by: 

;2 D2 "2 2 "2 2 Bj [/j lB1 +J2B2 +jaB 3 
wherejbj2 and j3 are the components of ej in the direc- 
tions el, e 2 and e3. 
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